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1. Introduction 

In January 2006, High Energy Metals, Inc. (HEMI) explosively bonded a Stellite 25 liner to a 
portion of a reamed-out M242 Bushmaster gun tube (1).  This work followed previously 
successful attempts to explosively bond a refractory metal liner to the same type of gun tube by 
TPL, Inc. (2).  Initial examination of the Stellite-lined tube revealed some portions of the liner-
tube interface that did not have the characteristic wave pattern that typifies a strong bond.  The 
extent of the nonwavy portion could not be discerned with a small number of microscopic 
examinations.  Consequently, the overall quality of the bond was in doubt. 

The need to perform a mechanical test to assess the bond shear strength between the gun tube 
and liner was recognized.  A simple push-out test was decided upon as the most direct way to do 
this.  In section 2, the sample preparation, fixturing, and the test procedure are presented.  
Section 3 presents the results of the measurements, along with a finite-element analysis that 
helps interpret the results. 

High bond strength between a liner and gun tube is needed to keep the liner in place during 
firing.  This is especially true for rifled barrels, where the reaction to the engraving forces tends 
to rotate the liner.  In the past, mechanically pinning a refractory metal liner to an M242 gun tube 
was unsuccessful because the pins could not withstand the loads produced during the firing, 
resulting in liner movement (3).  However, swaging a steel jacket over a Stellite rod can produce 
an acceptable bond in a 5.56-mm gun tube (4).  It is reasonable to assume that there is a 
minimum bond strength required for acceptable performance of a given type of gun tube.  While 
the exact figure is not known, the results of the present work indicate that the bond shear strength 
produced by explosive bonding is more than adequate for the M242 gun tube, even if there are 
small portions of the tube not perfectly bonded. 

The internal stress generated as a result of the explosive bonding process may also contribute to 
the bond strength.  In section 4, x-ray diffraction measurements of the internal stresses produced 
by explosive bonding will be presented and compared to internal stresses in other gun barrels 
that have either been autofrettaged or have had liners explosively bonded to them.  Using a 
simple assumption about frictional forces, the contribution to the bond strength will be estimated 
and compared to those attainable with a shrink-fit process. 

Section 5 contains a summary of the work.
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2. Experimental Test Procedure 

2.1 Sample Preparation 

Three sections of an M242 barrel (labeled A, B, and C) were explosively clad with Stellite 25 by 
HEMI.  The tubes were then sectioned, as shown in figure 1, to provide for various 
measurements (1).  The dotted lines in this figure indicate additional cuts made at a later time to 
determine the inside diameter of the liner.  Sections B3 and C3 were chosen as representative 
portions of the tubes.  These parts were sawed into disc specimens, with one side being ground 
smooth.  The final thickness of each disc was 0.25 in.  This thickness was chosen so that the 
sample was thin enough to be tested (based on the load limit of the Instron machine) but thick 
enough to provide a representative bond surface area.  Each saw cut and grinding operation 
accounted for approximately 0.2 in of material.  Fifteen discs from each tube were produced and 
labeled B31–B46 for tube B and C31–C36 for tube C. 

From previous work, it was found that the inside diameter of the liner varies with position along 
the tube axis.  This was confirmed for sections B3 and C3.  Measurements of the inside diameter 
are shown as a function of the distance from the leading (left) end of each tube in figure 2. 

 

Tube A

Tube B

Tube C

A1    A2            A3                   A4 A5  A6

B1 B2                          B3                   B4 B5

C1 C2                  C3                           C4 C5

 

Figure 1.  Labeling scheme for the sections saw cut from the gun tubes.
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Figure 2.  Liner inside diameter as a function of the distance from the leading end. 

2.2 Test Fixture Description and Development 

A cross-section illustration of the test fixture used for the push-out tests is shown in figure 3.  It 
consisted of a pusher plug and a base plate.  Samples were placed in the test fixture as shown, 
and an Instron machine was used to determine the load needed to extract the liner.  The first 
pusher was made of stainless steel hardened to HRC 45.  After one of the tests resulted in 
yielding of the pusher plug, the plug material was changed to Maraging 300 steel hardened to 
HRC 55.  The base plate was made from 4340 steel hardened to HRC 31.  A picture of the test 
fixture parts and a sample is shown in figure 4. 

The dimensions of the test fixture that were adjusted as the tests progressed are shown as D1 and 
D2 in figure 3.  These dimensions will depend on the actual size of the samples being tested.  
Since the inside diameter of the samples to be examined in these tests varied, the smallest liner 
inside diameter dictated the value of D2.  In this instance, D2 was selected to be 0.93 in, which 
allowed the pusher to be used with all samples.  Sample B31 (liner inner diameter of 0.936 in) 
was not used in this series of tests. 

The value of D1 that was chosen to start the tests was 1.110 in.  This value was based on the 
measurements of the liner-gun tube interface made in de Rosset (1).  All of the measured gun 
tube inner diameter measurements exceeded 1.110 in for the sections of the barrels being 
examined (B3 and C3).  The maximum value of the liner-gun tube interface diameter was 
measured to be 1.150 in.  However, there was some uncertainty in this value, as well as the 
minimum value.
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D1 

D2 

Base Plate

Pusher Plug 
Gun Tube 

Liner 

 

Figure 3.  Cross-sectional view of the test fixture showing the placement of the sample to be tested. 

 

 

Figure 4.  Test fixture parts and sample C45. 

 
The first test was conducted with sample C46.  An Instron Model 1127 was used to apply a load 
to the test fixture and sample.  The sample was loaded to 50 × 103 lb at a constant crosshead 
speed.  No drop in the load was observed, indicating that the liner had not failed.  The sample 
was removed from the Instron, at which time, a small amount of deformation in the liner was 
noticed.  The test was continued using another load frame (MTS model 204-81) capable of 
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applying a 100 × 103-lb load.  The load was applied at a constant crosshead speed of 0.05 in/min.  
A load of 91.5 × 103 lb was achieved before the load began to decrease.  The sample and test 
fixture were removed from the machine.  However, the sample was stuck in the test fixture and 
had to be forcibly removed.  After the parts were separated, it was noted that portions of the liner 
were still attached to the gun barrel.  This was the first indication that the bond strength was 
higher than the shear strength of the liner. 

The results of the test with C46 indicated that there might be some contact between the pusher 
plug and the gun barrel.  Therefore, a paper shim between the liner and pusher plug was used for 
tests C45 and C44 to ensure a more accurate centering of the sample in the test fixture.  Loads 
over 90 × 103 lb were also achieved for these tests.  As before, the pusher and liner were stuck 
together as a result of the test. 

The pusher plug outer diameter (D1) was reduced to 1.050 in to ensure that there was no 
interference between the pusher plug and gun tube.  Tests with samples C43 and C42 resulted in 
a maximum load of over 60 × 103 lb.  The load-displacement plots for these two tests are shown 
in figure 5. 
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Figure 5.  Load-displacement curves for tests C42 and C43. 
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The test with sample C41 continued until a load of 70 × 103 lb was achieved.  The test was 
halted, and after removing the sample and test fixture from the load frame, it was observed that 
the pusher plug had sheared.  A new plug made of Maraging 300 steel (HRC 55) was obtained 
and used to complete the tests.  The final design of the test fixture is shown in the appendix. 

Based on the analysis presented in section 3, the following standard test procedure was 
developed.  A sample was placed in the test fixture, and a shim was applied to help center the 
pusher plug in the gun tube.  The sample and fixture were then placed in the load frame, and the 
opening of the load frame was adjusted manually so that there was a very small gap between the 
platens and the sample/test fixture.  The test was conducted in displacement-control mode  
(0.05 in/min) to a maximum displacement of 0.05 in, at which time, the test was concluded and 
the sample/test fixture removed from the test machine.  The data from each test, taken at a 
sampling rate of one data point per second, were stored in an Excel* file. 

3. Test Results and Interpretation 

Table 1 shows the compressive loads on the sample at a crosshead displacement of 0.045 in into 
the sample.  (Due to variation in the zero setting of the load frame, not all samples actually 
experienced a crosshead displacement of 0.05 in.)  The mean values of the loads for tubes B and 
C are 46.4 × 103 lb and 49.8 × 103 lb, respectively.  The standard deviations for these values are 
1.7 × 103 lb and 3.5 × 103 lb for tubes B and C, respectively. 

Table 1.  Compressive loads at 0.045-in displacement. 

Sample Load 
(103 lb) 

Sample Load 
(103 lb) 

B32 49.6 C31 53.7 
B33 44.3 C32 54.6 
B34 46.1 C33 56.9 
B35 49.6 C34 50.9 
B36 46.2 C35 49.4 
B37 44.5 C36 50.6 
B38 47.5 C37 45.6 
B39 47.3 C38 45.2 
B40 44.8 C39 47.8 
B41 45.4 C40 47.8 
B42 44.9 C42 47.0 
B43 48.5 C43 47.9 
B44 46.1 — — 
B45 45.6 — — 
B46 45.7 — — 

                                                 
*Excel is a registered trademark of Microsoft Corporation. 
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The stress at the interface between the gun tube and liner will vary with the applied load and 
location on the interface.  To help interpret the experimental results, a finite-element analysis 
was performed using ABAQUS.  The finite-element model is shown in figure 6.  The finite-
element analysis utilized 6975 axisymmetric elements and frictionless contact between the steel 
pusher and the Stellite liner.  The Stellite liner material is assumed to be elastic-perfectly plastic, 
with a yield of 895 MPa.  The liner is assumed to be perfectly bonded to the gun tube, and failure 
of this interface is not allowed in the simulation.  The assumption that the interface does not fail 
is consistent with the experimental observations.  Prestress of the liner and the gun tube due to 
the bonding process is also neglected.  The gun tube nodes along the bottom surface are 
constrained in the vertical direction.  The simulated load is applied as a downward displacement 
of the nodes along the top surface of the steel pusher. 

 
Figure 6.  Axisymmetric finite-element model. 

Figure 7 shows the simulated von Mises stress state at a steel pusher displacement of 0.0053 in 
(analysis step time is scaled by 1/10).  Observation of figure 7 shows the classic 45° shear band 
indicating ductile yielding of the liner.  Figure 7 also shows that the steel pusher confines the 
deformed Stellite liner material at the steel pusher’s smaller diameter interface, leading to a 
stress concentration at this location.  This plastic deformation of the liner is clearly the reason for 
the pusher plug becoming stuck in the sample. 

 
Figure 7.  Von Mises stress state at 0.053 in of steel pusher vertical displacement.
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The shear stress along the length of the liner-gun tube interface is plotted in figure 8.  This stress 
is achieved for a displacement of 0.053 in of the pusher plug.  The shear stress exceeds 65 ksi 
near the outer edges of the sample.  At the center, it is above 45 ksi.  This calculation provides 
evidence that the bond shear strength is greater than 45 ksi. 
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Figure 8.  Shear stress as a function of position along liner-gun tube interface at 
0.053-in pusher plug displacement. 

However, the actual shear strength of the bond was not determined since the bond did not fail in 
any of the standard tests (table 1). 

The finite-element analysis showed that the liner material yielded at very low displacement of 
the pusher plug (less than 0.002 in).  This was also observed during testing.  As a result, the tests 
were stopped when the crosshead displacement reading reached 0.050 in.  Displacements greater 
than 0.050 in would simply have resulted in the pusher plug being more firmly attached to the 
liner. 

 

4. Internal Stresses 

4.1 Measured Internal Stresses 

4.1.1  Experimental Procedure 

A Technology for Energy Corp. (TEC) Model 1610 X-Ray Stress Analysis System, employing 
the sin2ψ stress-measuring technique, was used to measure the residual stress (strain) produced in 
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the steel gun tube from the explosive bonding process.  All residual stress data were collected 
from a 4- or 10-positive ψ angle arrangement and CrKα radiation diffracted from the (211) lattice 
planes of the D6AC steel.  (Residual stress measurements were not made on the steel gun tube 
prior to bonding.)  The incident x-ray beam was collimated to provide a 2-mm diameter round 
irradiated area on the specimen surface.  The x-ray elastic constant for D6AC steel, (1 + υ)/E, 
required to calculate the macroscopic residual stress from the measured strain, was taken from 
published literature. 

A 1/2-in thick disc specimen was sectioned from the leading end (specimen A2) and the trailing 
end (specimen A5) of gun tube A for residual stress analysis (see figure 1).  After the specimens 
were saw cut from the gun tube, they were ground flat and parallel and chemically polished on 
one face.  A polishing solution of 80% H2O2 (30% strength), 17.5% H2O, and 2.5% HF  
(48% strength) was used to remove 0.010–0.015 in of material from the saw cut and ground 
surface, thereby exposing the explosive bonding induced internal stresses.  Hoop and radial 
direction residual stresses were measured on the polished, cross-sectional surface along an inside 
diameter (ID) to outside diameter (OD) traverse in the arbitrarily chosen 0° and counter 
clockwise 90° orientations.  The ID measurement location refers to the interface of the Stellite 25 
liner and gun tube steel, and the OD measurement location was approximately 1.5 mm from the 
OD free surface.  Measurements were performed at 0.05 in (1.27 mm) intervals from the ID to 
the 0.40-in (10.16-mm) location and then every 0.10 in (2.54 mm) for the remainder of the 
traverse.  The precision of measurement for all data was ±2 ksi (±14 MPa).  This value 
represented the average of the larger of either the counting statistics error or the probable error 
(goodness of fit of the d-spacing vs. sin2ψ plots), both of which were generated for each 
measurement from statistical error analysis. 

4.1.2  Results 

The residual stress data in the D6AC steel acquired during this investigation are plotted in 
figures 9 and 10.  The hoop direction residual stresses are very similar in magnitude and 
distribution at the 0° and 90° orientations for the leading and trailing end specimens (A2 and A5, 
respectively), with the maximum compressive stresses found at the ID location.  This beneficial 
hoop stress becomes less compressive along the ID to OD traverse.  At approximately 0.35 in. 
(8.89 mm) into the gun tube wall, the hoop stresses change from compressive to tensile and 
become increasingly tensile through the remaining wall thickness.  The maximum tensile hoop 
stress was measured at the OD location. 

The magnitude and distribution of the radial direction residual stresses are similar at the 0° and 
90° specimen orientations but less symmetrical when comparing the leading and trailing ends of 
the gun tubes.  Of particular note is that the radial stress changes from tensive to compressive at 
the 0.40-in (10.16-mm) measurement location on the trailing end specimen but not until the 0.60-in 
(15.24-mm) location on the leading end specimen.  Additionally, the trailing end specimen radial 
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Figure 9.  Hoop direction residual stress data from explosion bonded Stellite 
25-lined Bushmaster gun tube specimens A2 (leading end) and A5 
(trailing end). 
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Figure 10.  Radial direction residual stress data from explosion bonded Stellite 
25-lined Bushmaster gun tube specimens A2 (leading end) and A5 
(trailing end).
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stress data had a greater negative trend along the traverse, with the average 0° and 90° 
orientation OD residual stress equal to –30 ksi (–207 MPa) vs. –16 ksi (–110 MPa) on the 
leading end specimen.  Since there was no accounting for these anomalies with the specimen 
sectioning or chemical polishing procedures, the differences may be attributed to the explosive 
bonding setup or operation.  Possible explanations are nonuniformity in the standoff distance 
between the liner and gun tube along the tube axis prior to bonding or asymmetrical explosive 
detonation rates, both of which also could have contributed to the inside diameter variation 
displayed in figure 10.  However, inasmuch as the hoop direction residual stress data were in 
agreement at all measurement locations, it is likely that the reason(s) for the inconsistencies in 
the radial stresses cannot be precisely identified. 

Of interest is the similarity in the hoop direction residual stress data for three different gun tubes.  
The data displayed in figure 11 came from measurements on an explosion-bonded Stellite 25-
lined (at HEMI), a Ta-2.5W-lined Bushmaster gun tube (explosion-bonded at TPL, Inc.) (5), and 
a 120-mm extended length gun tube (swage-autofrettaged at Benet Laboratories) (6).  The 
compressive stresses observed at the ID on the explosively-clad specimens, independent of the 
liner material and manufacturer, are approximately equivalent.  Adjacent to the ID, the HEMI 
and TPL plots deviate somewhat.  This result is probably due to one or more of the following:  
(1) different gun tube wall thickness (0.94 in and 1.22 in, respectively), (2) different liner 
thickness (see references 1 and 2), and (3) the manufacturer’s particular explosive bonding 
parameters.  As with the swage autofrettage process, the beneficial compressive hoop stresses 
produced from explosion bonding can be expected to increase the elastic strength of the gun tube 
and retard fatigue crack growth at the bore. 

4.2 Bond Strength Contribution From Residual Stresses 

The residual hoop stresses at the liner-gun tube interface are compressive, leading to a gripping 
action by the gun tube on the liner.  In addition, an estimate of the bond strength contribution 
from the residual radial stress measurement can be made.  First, assume that the explosive bond 
results in a smooth surface everywhere (i.e., no characteristic wavy pattern).  Next, assume that 
the residual radial stress at the liner-gun tube interface is 25 ksi.  (This was the value at three of 
the four measurement orientations shown in figure 10.)  Assuming a coefficient of static friction 
between 0.3 and 1.0, the shear strength contribution due to the combination of radial stress and 
friction will be between 7.5 and 25 ksi. 

It is interesting to compare this range of values with those that might be obtained with shrink-
fitting a liner inside a gun tube.  The shear strength of the bond will also result from the presence 
of a residual radial stress and friction.  This process begins by machining the liner and gun tube 
so that the liner outer diameter is greater than the gun tube inner diameter.  The gun tube is 
heated, and, at the same time, the liner is cooled.  Thermal expansion and contraction effects then 
make it possible to slip the liner into the gun tube.  When the temperature of the gun tube and 



 12

-100

-80

-60

-40

-20

0

20

40

60

80

100

0.0 0.4 0.8 1.2 1.6 2.0 2.4

I.D. to O.D. Traverse, inches

R
es

id
ua

l S
tr

es
s,

 k
si

-690

-552

-414

-276

-138

0

138

276

414

552

690
0.0 10.0 20.0 30.0 40.0 50.0 60.0

I.D. to O.D. Traverse, mm

R
es

id
ua

l S
tr

es
s,

 M
Pa

HEMI, Explosive Bonding, 25 mm
TPL, Explosive Bonding, 25 mm
Benet, Swage Autofrettage, 120 mm

 

Figure 11.  Hoop direction residual stress data from explosion bonded Stellite 25-
lined and Ta-2.5W-lined Bushmaster gun tubes and swage 
autofrettaged 120-mm gun tube. 

liner has reached equilibrium, internal stresses will develop that depend on the original amount 
of mismatch between diameters. 

The temperature range over which the materials can be heated and cooled is bounded by 
practical considerations.  For instance, the liner can be cooled using liquid nitrogen (–196 °C), 
and the steel can be heated up to about 350 °C to keep it below its first phase transformation 
temperature.  Given that the coefficients of thermal expansion for the D6AC steel and Stellite 25 
are 16.1 µm/m/°C and 12.9 µm/m/°C, respectively, a total mismatch of 205 µm can be obtained, 
assuming the initial diameters are 25.4 mm.  (The mismatch is equivalent to approximately 8 mil.)  
The entire 205 µm cannot be used for the initial mismatch because some clearance will be needed 
to slide the liner into the gun tube.  An optimistic assumption is that only 4 mil on the diameter 
will be needed for clearance.  The allowable initial mismatch will then be 4 mil (102 µm). 

Initially, the liner would have an inner diameter of 25.4 mm and an outer diameter of 30.48 mm.  
(A liner thickness of 0.1 in [2.54 mm] was used here.)  The outer diameter of the gun tube is 
taken to be 76.2 mm (3.0 in).  These dimensions can be used in the standard formula (see, for 
instance [7]) to approximate the internal radial stress, σr, generated in the gun tube as a result of 
the shrink-fit process:
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 σr  =  – (E δ/b) (b2 – a2)(c2 – b2)/(2b2(c2 – a2)), (1) 

where E is the modulus of the D6AC steel (210 MPa) and δ is 102 µm.  In equation 1, a is the 
inner radius of the liner, b is the outer radius of the liner, and c is the outer radius of the gun tube.  
The resulting internal radial stress is compressive 203 MPa (29 ksi). 

The stress necessary to initiate movement between the barrel and liner can be calculated using 
the same range of values for the coefficient of static friction that was used previously.  This gives 
a possible range of 8.7–29 ksi values for the shear strength of the bond as a result of the shrink-
fitting process.  This range is seen to be comparable to that produced by the residual radial stress 
produced by explosive bonding. 

 

5. Summary 

A test fixture has been designed to determine the shear strength of an explosively-formed bond 
between an M242 medium-caliber gun tube and a Stellite 25 liner.  Over 30 tests on two different 
sections of gun barrel were carried out.  In each case, the liner yielded before the bond had the 
opportunity to fail.  The shear strength of the bond could not be determined using the established 
test procedure because the bond never failed in these tests.  However, a finite-element analysis 
indicated that the bond shear strength was likely to be greater than 45 ksi.  Internal stresses were 
measured by x-ray diffraction.  The measured stresses were used to estimate the contribution that 
a combination of residual radial stress and friction could make the bond shear strength.  The 
range of values determined from this calculation, 7.5–25 ksi, was comparable to the range 
provided by a shrink-fit process. 



 14

6. References 

1. de Rosset, W. S.  Explosive Bonding of Stellite 25; ARL TR-3816; U.S. Army Research 
Laboratory:  Aberdeen Proving Ground, MD, June 2006. 

2. Lowey, R. F.  Gun Tube Liner Erosion and Wear Protection; TPL-FR-ER31 (under contract 
DAAD19-99-C-0002); TPL, Inc.:  Albuquerque, NM, 28 May 2002. 

3. Bagnall, C.; Dalley, A. M.; Huston, J. F.; Martin, N. R.; McMullen, P. J.; Miller, C. S.; 
Papesch, C. A.; Sinosky, J. T. III; Valencia, J. J.; Guillard, S.  Advanced Gun Barrel 
Technology Initiative, Final Report:  Modeling, Metallurgy and Firing Test Report for the 
M242 Mo-ODS Partially Lined Barrel; TR no. 98–25; National Center for Excellence in 
Metalworking Technology:  Johnstown, PA, 2 July 1998. 

4. Livermore, G.; Sadowski, L.  Barrel Weight Reduction; ARAEW-TR-05005; U.S. Army 
Armament Research, Development and Engineering Center:  Picatinny, NJ, May 2005. 

5. Pepi, M.; Snoha, D. J.; Montgomery, J. S.; de Rosset, W. S.  Examination of Intermetallic 
Phases and Residual Stresses Resulting from Explosive Bonding of Refratory Metal Gun 
Tube Liners; ARL-MR-550; U.S. Army Research Laboratory:  Aberdeen Proving Ground, 
MD, February 2003. 

6. Snoha, D. J.  Letter report to Benet Laboratories, Watervliet, NY, January 1993. 

7. Timoshenko, S.  Strength of Materials, Part II, Advanced Theory and Problems; 14th 
printing; D. Van Nostrand Company:  New York, NY, June 1953. 



 15

Appendix.  Test Fixture Design 

The final design recommended for the push-out tests is shown in figure A-1.  Note that the 
dimensions of the pusher plug have to be modified for the particular values of the inner 
diameters for the liner and gun tube. 
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Figure A-1.  Final test fixture configuration; all dimensions in inches.
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